High nrDNA ITS polymorphism in the ancient extant seed plant Cycas: incomplete concerted evolution and the origin of pseudogenes.
نویسندگان
چکیده
Molecular studies of six species from the ancient extant seed plant Cycas, covering a wide range of its morphological diversity and all major areas of distribution, revealed a high level of intra-individual polymorphism of the internal transcribed spacer (ITS1, 5.8S, and ITS2) region, indicative of incomplete nrDNA concerted evolution. Through a range of comparisons of sequence characteristics to functional cDNA ITS copies, including sequence length and substitution variation, GC content, secondary structure stability, the presence of a conserved motif in the 5.8S gene, and evolutionary rates, the PCR amplified divergent genomic DNA ITS paralogs were identified as either putative pseudogenes, recombinants or functional paralogs. This incomplete ITS concerted evolution may be linked to the high number of nucleolar organizer regions in the Cycas genome, and the incomplete lineage sorting due to recent species divergence in the genus. Based on the distribution of a 14 bp deletion, an early evolutionary origin of the pseudogenes is indicated, possibly predating the diversification of Cycas. Due to their early origin combined with the unconstraint evolution of the ITS region in pseudogenes, they accumulate high levels of homoplastic mutations. This leads to random relationships among the pseudogenes due to long-branch attractions, whereas the phylogenetic relationships inferred from the functional ITS paralogs grouped the sequences in species specific clades (except for C. circinalis and C. rumphii). The findings of our extensive study will have a wide significance, for the evolution of these molecular sequences, and their utilization as a major marker for reconstructing phylogenies.
منابع مشابه
Characterization of angiosperm nrDNA polymorphism, paralogy, and pseudogenes.
Many early reports of ITS region (ITS 1, 5.8S, and ITS 2) variation in flowering plants indicated that nrDNA arrays within individuals are homogeneous. However, both older and more recent studies have found intra-individual nrDNA polymorphism across a range of plant taxa including presumed non-hybrid diploids. In addition, polymorphic individuals often contain potentially non-functional nrDNA c...
متن کاملNuclear Ribosomal ITS Functional Paralogs Resolve the Phylogenetic Relationships of a Late-Miocene Radiation Cycad Cycas (Cycadaceae)
Cycas is the most widespread and diverse genus among the ancient cycads, but the extant species could be the product of late Miocene rapid radiations. Taxonomic treatments to date for this genus are quite controversial, which makes it difficult to elucidate its evolutionary history. We cloned 161 genomic ITS sequences from 31 species representing all sections of Cycas. The divergent ITS paralog...
متن کاملITS Polymorphisms Shed Light on Hybrid Evolution in Apomictic Plants: A Case Study on the Ranunculus auricomus Complex
The reconstruction of reticulate evolutionary histories in plants is still a major methodological challenge. Sequences of the ITS nrDNA are a popular marker to analyze hybrid relationships, but variation of this multicopy spacer region is affected by concerted evolution, high intraindividual polymorphism, and shifts in mode of reproduction. The relevance of changes in secondary structure is sti...
متن کاملPersistent nuclear ribosomal DNA sequence polymorphism in the Amelanchier agamic complex (Rosaceae).
Individual plants of several Amelanchier taxa contain many polymorphic nucleotide sites in the internal transcribed spacers (ITS) of nuclear ribosomal DNA (nrDNA). This polymorphism is unusual because it is not recent in origin and thus has resisted homogenization by concerted evolution. Amelanchier ITS sequence polymorphism is hypothesized to be the result of gene flow between two major North ...
متن کاملPhylogeny and morphological traits evolution of Astragalus sects. Acanthophace and Aegacantha in Iran on the basis of nrDNA ITS and rpl32-trnLUAG sequences
In this study, phylogenetic relationships and evolutionary trends of morphological characters of Astragalus sects. Acanthophace and Aegacantha were studied using nrDNA ITS and rpl32-trnLUAG datasets while Astragalus stocksii was selected as the outgroup. The phylogenetic results indicated the non-monophyly of A. sect. Acanthophace in its current circumscription due to the distant exclusion of A...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecular phylogenetics and evolution
دوره 55 1 شماره
صفحات -
تاریخ انتشار 2010